
ABSTRACT

A significant bias in parameters, estimated with the propor-
tional odds model using the software NONMEM, has been
reported. Typically, this bias occurs with ordered categorical
data, when most of the observations are found at one extreme
of the possible outcomes. The aim of this study was to assess,
through simulations, the performance of the Back-Step
Method (BSM), a novel approach for obtaining unbiased
estimates when the standard approach provides biased esti-
mates. BSM is an iterative method involving sequential sim-
ulation-estimation steps. BSM was compared with the stan-
dard approach in the analysis of a 4-category ordered vari-
able using the Laplacian method in NONMEM. The bias in
parameter estimates and the accuracy of model predictions
were determined for the 2 methods on 3 conditions: (1) a
nonskewed distribution of the response with low interindi-
vidual variability (IIV), (2) a skewed distribution with low
IIV, and (3) a skewed distribution with high IIV. An increase
in bias with increasing skewness and IIV was shown in
parameters estimated using the standard approach in NON-
MEM. BSM performed without appreciable bias in the esti-
mates under the 3 conditions, and the model predictions were
in good agreement with the original data. Each BSM estima-
tion represents a random sample of the population; hence,
repeating the BSM estimation reduces the imprecision of the
parameter estimates. The BSM is an accurate estimation
method when the standard modeling approach in NONMEM
gives biased estimates.

KEYWORDS: ordered categorical, proportional odds model,
bias in parameter estimates, NONMEM, Laplacian, pharma-
codynamics.

INTRODUCTION

The nonlinear mixed effects modeling software, NON-
MEM,1 may in some situations provide parameter estimates

with an apparent bias. It has previously been shown that both
the first order (FO) method and the first order conditional
estimation (FOCE) method in NONMEM can produce
biased pharmacokinetic (PK) parameter estimates if the vari-
ability of the data are high.2,3 The FOCE method has also
been shown to produce considerable bias in pharmacody-
namic (PD) parameters.4 More recently, Jonsson et al5
showed that the Laplacian method in NONMEM produces
biased parameter estimates when using a nonlinear pharma-
codynamic model to describe the data. In these situations, the
goodness-of-fit and the predictive performance of the model
may improve with an estimation method resulting in unbi-
ased parameter estimates.

Ordered categorical data are commonly used to describe sub-
jectively scored symptoms and side effects and most of the
observations are often at one extreme of the possible out-
comes (ie, the distribution of response is skewed). The stan-
dard approach for modeling ordered categorical data is the
logit model for cumulative probabilities, also referred to as
the proportional odds model. Repeated measurements are
often handled using mixed effects modeling, where the
interindividual variability (IIV) is added as an overall vari-
ability on baseline probabilities.6-9 When analyzing ordered
categorical data with a skewed distribution using the stan-
dard mixed effects modeling approach, the parameter esti-
mates will be severely biased if the Laplacian method in
NONMEM is used.10 The bias in the parameter estimates
increases with increasing skewness of the response distribu-
tion and increasing IIV of data. The frequency of rare events
will be overestimated when simulation of new data is per-
formed using the biased parameters.

One way of addressing the problem is to normalize the dis-
tribution of the categorical outcome by redefining the cate-
gories. If the categories were chosen before the data was col-
lected, or the data was categorized on collection, redefining
the categories would imply recollection of data using the new
definitions for the categories. In these cases, it might be
preferable to reduce bias in parameter estimates by changing
the model. Two methods have been proposed that both view
the modeling of categorical responses as a 2-step process11,12

in which the first step is to model the incidence of response
or the probability of being a responder and the second step is
to model the severity of response.
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Olsen and Schafer11 propose to model the response as a semi-
continuous variable, using a logistic model for modeling the
incidence of effect, while modeling the severity of effect
using a continuous model, both steps including IIV. In the
first step, data are reduced from polychotomous to dichoto-
mous by modeling the incidence of effect/no effect (not con-
sidering the severity of the effect), thereby decreasing the
skewness of response and, consequently, reducing the bias in
parameter estimates.

In the modeling procedure proposed by Kowalski et al,12 the
incidence of being a responder/non-responder is modeled in
the first step, considering only one observation per individual
and no IIV. In the second step, the severity of response (given
being a responder) is modeled using the standard mixed
effects modeling approach. Bias in parameter estimates is
avoided by not considering IIV in the first step and, similar
to Olsen and Schafer’s model,11 by reducing the skewness of
the response distribution by only including responders in the
second step. However, since the first step only considers one
observation per patient, dose escalation studies and time-
varying covariates cannot be appropriately handled using this
method. Another limitation is that in the first step the param-
eter estimates will be dependent on the number of observa-
tions per subject, with increasing probability of a nonzero
event with increasing number of observations. Such data-
dependency of parameters limits the possibility of making
extrapolations based on the model.

An alternative to changing the model to handle biased esti-
mates is to change or modify the estimation procedure itself.
The Back-Step Method (BSM) is an iterative method that
searches for the unbiased parameter estimates, which upon
simulation generate data that mimic the original data. The
purpose of this investigation is to assess the performance of
the BSM through simulation and estimation of ordered cate-
gorical data.

MATERIALS AND METHODS

This is a Monte Carlo simulation study in which the original
data sets were derived from a known model. All simulations
and model fittings were performed using NONMEM Version
VI (beta).1 No differences were found for selected data sets
when parameter estimates of NONMEM Version VI (beta)
and NONMEM Version V were compared, supporting that
the BSM could be used with NONMEM Version V. The
Laplacian estimation method with the likelihood option was
used.

In the following section, the proportional odds model is first
outlined, followed by a description of the simulation condi-
tions, the BSM, the methods for calculation of bias and
imprecision contribution, and the method for obtaining stan-
dard errors for BSM estimates.

The bias of the standard approach in NONMEM has previ-
ously been reported by the authors,10 but results are also
given here for comparison with the BSM.

The Proportional Odds Model
The severity of response was assessed on a 4-category ordi-
nal scale: 0, 1, 2, and 3. A proportional odds model, similar
to the models used by Gupta et al6 and Sheiner et al9 was
used for simulation and estimation of the probability of
events. If Yi = (Yi1, Yi2,… Yin) is the vector of categorical
response for the ith individual, then the probability that Yit is
greater than or equal to the score m (m = 0, 1, 2, and 3) has
the following general structure:

in which,

giving,

The function ƒ[x] denotes the logit transform of a probabili-
ty, which was used to ensure the probability to be between
zero and one. The ƒm,i is a function of baseline conditions,
drug dose, and placebo as defined in Equation 4, and ηi is a
normally distributed, zero mean random variable with stan-
dard deviation ω describing interindividual variability.

in which θbl = j specifies the baseline probabilities of the dif-
ferent levels of Y. The intercept parameter θbl = 0 (for m = 0)
need not be estimated because the cumulative probability of
event score being zero or more is one. Iplc is an indicator vari-
able for placebo effect taking the value zero at the first occa-
sion and the value one at all other occasions. The θplc and
θdose are fixed effect parameters describing the magnitude of
the placebo effect and dose effect, respectively.

All parameters were vectorized in the vector Φ to ease nota-
tion:

The first 5 elements of the vector are the fixed effect param-
eters and the last element is the variance of the random effect.
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Indexes to Φ were used to indicate parameter estimates from
the standard mixed effects modeling approach (STD), the
simulation step in the BSM procedure (sim), the estimation
step in the BSM procedure (est), and the final parameters
estimated using BSM (BSM).
By fitting above described proportional odds model to data,
the parameter estimates from the standard mixed effects
modeling approach, ΦSTD, were obtained.

Simulation Conditions
The data sets consisted of 1000 patients, evenly divided into
4 dosage groups (placebo, 7.5, 15, and 30 units of drug), with
4 observations per individual: 1 baseline observation and 3
after study drug intervention.
Nominal parameter values were set to simulate 3 conditions;
(1) a population with a nonskewed distribution of the
response and low IIV, (2) a skewed distribution of the

response and low IIV, and (3) a skewed distribution of the
response and high IIV (Table 1). In the population with the
nonskewed distribution, nominal parameter values were cho-
sen such that, at baseline, observations of each category were
equally frequent. The expected proportion of observations, to
be in one category, is the same for the 2 skewed distributions,
but the nominal parameter values used to generate these data
differ, due to differences in variability. The skewed distribu-
tion with high IIV was designed to mimic a real drug data set
of observations of an adverse event.

The Back-Step Method
The Back-Step Method is described below and shown in
Figure 1. The BSM searches for the unbiased parameter esti-
mates, ΦBSM, which upon simulation generate data that
mimic the original data. This search is an iterative process
involving sequential simulation-estimation steps.

Table 1. Nominal Parameter Values and Expected Proportions of Observations to Each Category in the Simulated Original
Data Sets, Presented as Percent of the Total Population*

Condition
Type of

Distribution
Expected Proportion of Observations to

Category 0/1/2/3 at Baseline (%)
Nominal Parameter Values

θθ1 θθ2 θθ3 θθ4 θθ5 ωω2

(1) nonskewed 24 / 26 / 26 / 24 1.85 -1.85 -1.85 0.483 0.0459 4
(2) skewed 96.5 / 1.22 / 1.44 / 0.84 -4.88 -0.548 -1.18 1.55 0.0303 4
(3) skewed 96.5 / 1.22 / 1.44 / 0.84 -11.8 -1.32 -2.96 3.85 0.0717 40

* Nominal parameter values were set to simulate 3 conditions: (1) nonskewed distribution of response with low interindividual variability (IIV), (2)
skewed distribution with low IIV, and (3) skewed distribution with high IIV.

Figure 1. The Back-Step Method. Iteration of sequential simulation-estimation, followed by updating simulation parame-
ters is repeated until the CC is met or the maximum number of iterations is exceeded. In the case of process ending due to
maximum number of iterations reached, the Φsim with the lowest value of CC is kept as the final parameter estimates,
ΦBSM. Φsim is the vector of simulation parameters and Φest is the vector of parameters estimated from simulated data.



The AAPS Journal 2004; 6 (3) Article 19 (http://www.aapsj.org).

4

The proportional odds model was fitted to the original data,
generating the first set of estimated parameters, Φest(1).
These parameters were used as the first simulation parame-
ters, Φsim(1), when simulating new data under the model. The
new data were fitted to the model and the second set of esti-
mated parameters, Φest(2), was generated. Based on the devi-
ation between Φest(1) and Φest(2), the previous simulation
parameters, Φsim(1), were updated according to the search
algorithm, Equation 6, giving the new simulation parameters,
Φsim(2):

where φl,sim(n+1) and φl,sim(n) are simulation parameters for
the (n + 1)th and the nth iteration, respectively; φl,est(n) and
φl,est(1) are the estimated parameters from the nth and the
first iteration, respectively. The calculations were performed
individually for each of the parameters, as indicated by the
parameter index l of the vectors. Each simulation-estimation
step was followed by an update of the simulation parameters
based on Equation 6. This cycle was repeated until the max-
imum number of iterations (350) was exceeded or the con-
vergence criterion (CC) was less than one. CC is given by the
following:

where φl,est(n) and φl,est(1) are the estimated parameters for
the nth and first iteration and SE(φl,est(1)) is the standard
error of the first estimated parameter. If the BSM was ended,
because the CC was less than one, the Φsim of that iteration
was kept as the final parameter estimate. On the other hand,
if the BSM was ended because the maximum number of iter-
ations was exceeded, the Φsim of the previous iteration with
the lowest value of the CC was kept as the final parameter
estimate, ΦBSM. The above procedure was automated using
the programming language Perl,13 and the code is available
on request from the corresponding author.

Estimation of Bias
To assess the bias in the parameter estimates, 100 original
data sets were simulated for each of the conditions (1), (2),
and (3) using the nominal parameter values listed in Table 1.
Each original data set was then analyzed once with the stan-
dard mixed effects modeling approach, resulting in one ΦSTD
for each simulated data set, and once with the Back-Step
Method, resulting in one ΦBSM for each simulated data set.
The nominal parameters used for simulating the original data
sets were taken to be the true unbiased parameter value, Φ.

The relative biases were calculated according to Equation 7,
for each parameter individually, as indicated by l, the param-
eter index of the vectors.

Estimation of Contribution of Imprecision
Imprecision in the parameter estimates from the BSM proce-
dure will arise from 2 sources. The first source of impreci-
sion is that a limited sample of the population is studied and
this source of imprecision is also present in the estimates
derived from the standard approach. The second is the added
imprecision from the BSM procedure, as the final BSM esti-
mates will depend on the random number sequence used in
the simulation-estimation sequence.

The imprecision in parameter estimates from the BSM pro-
cedure can be reduced in 2 ways, the parallel and the serial
procedure. In the parallel procedure, several BSM estima-
tions are performed and the average of the final estimates
from these parallel runs is taken as the final estimate. In the
serial procedure, the iteration process of a BSM is extended
with m additional steps, and the average of the n estimates
with the lowest value of the convergence criterion is used as
the final parameter estimate.

Estimation of contribution of imprecision caused by the
BSM and the reduction of imprecision by serial runs were
investigated. For this purpose, 20 original data sets were sim-
ulated for each of the 3 conditions (1), (2), and (3). Ten of the
original data sets were then analyzed 10 times with BSM,
resulting in 10 ΦBSM,single for each data set. Also for the other
10 data sets, 10 BSM estimations were performed, but the
average of the 20 estimates with the lowest value of the CC
was taken as the final estimate of each run. The estimates
from both ΦBSM,single and ΦBSM,serial, Yij, were analyzed as
independent variables using a linear mixed effects model
with 3 parameters:

where the subscript i represents the original data sets, and the
subscript j represents each BSM estimate. The θ represents
the typical parameter value and εsample,i and εBSM,ij are zero
mean random variables with estimated variances of σsample

2

and σBSM
2, respectively. The σsample is the relative impreci-

sion from sample variability alone or sample imprecision;
σBSM is the imprecision that originates from BSM, either sin-
gle or serial estimation.
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Standard Errors for BSM estimates
A nonparametric bootstrap was performed to illustrate how
SEs for the parameter estimates from the BSM can be
obtained. For this purpose, one original data set was simulat-
ed under condition (3) using the nominal parameter values
listed in Table 1. Two hundred nonparametric bootstrap data
sets were created based on the simulated original data set.
Parameters were estimated from the bootstrap data sets,
using serial BSM estimations, where the average of the 20
estimates of 350, with the lowest value of the CC, was used
as the final estimate. The standard errors of these BSM/boot-
strap estimates were then calculated.
In the investigation of imprecision, but not in the investiga-
tion of bias, only simulated data with at least one observation
in each category were used to assure estimability of the
model parameter.

RESULTS

When analyzing the data using the standard approach in
NONMEM, the bias in the parameter estimates increased
with increasing skewness of the response and with increasing
interindividual variability (Table 2 and Figure 2). Simulation
of new data based on these estimates showed an increase in
overprediction of rare events with increasing bias (Figure 3).
The Back-Step Method performed without bias in all condi-
tions tested (Table 2 and Figure 2). Since ΦBSM were unbi-
ased for all conditions, the predictions of events using BSM
estimates were in good agreement with the original data
(Figure 3).

The BSM was well suited to estimate the parameters as evi-
denced by high precision of the estimates from 10 replicate
data sets of each condition analyzed using a linear mixed
effects model. Even for a single BSM estimation, sample
variability dominated over BSM variability (Table 3).
However, serial BSM estimates reduced the contribution
from BSM even further (Table 3). The σ2

BSM was on average
35% of total variance for a single BSM estimation, whereas
for serial BSM estimations, σ2

BSM was decreased to 4% of
total variance.

The standard errors, estimated using the BSM in a nonpara-
metric bootstrap, are listed in Table 4. As expected, the rela-
tive SE estimates obtained by nonparametric bootstrap were
in good agreement with the sample imprecision estimated.
None of the 90% confidence intervals, estimated using the
200 bootstrap samples, included zero.

DISCUSSION

In this study, the performance was assessed of a method that
reduces the bias in parameter estimates by iteratively finding
the estimates that upon simulation result in a data set that
closely resembles the observed data. The performance of the
Back-Step Method was found to be without appreciable bias
under the conditions that were investigated.

The BSM shares many similarities with the posterior predic-
tive check (PPC)14-16 and with the simulation hypothesis test
(SHPT)17,18 in that it compares some variable value derived
from the observed data with a value or distribution of values
of the same variable derived from data sets generated from

Table 2. Estimated Population Parameters From Standard Approach and Back-Step Method Compared With True
Parameter Values*
Condition θθbl=1 θθbl=2 θθbl=3 θθplc θθdose ωω2

(1) True Value 1.85 -1.85 -1.85 0.483 0.0459 4

STD 1.84
(1.52, 2.08)

-1.85
(-2.00, -1.69)

-1.84
(-1.95, -1.71)

0.470
(0.228, 0.679)

0.0462
(0.0330, 0.0577)

3.80
(3.13, 4.64)

BSM 1.84
(1.58, 2.21)

-1.86
(-2.05, -1.67)

-1.86
(-1.98, -1.70)

0.520
(0.238, 0.844)

0.0471
(0.0289, 0.0618)

4.02
(3.40, 4.87)

(2) True Value -4.88 -0.548 -1.18 1.55 0.0303 4

STD -5.46
(-6.93, -4.53)

-0.571
(-0.698, -0.421)

-1.25
(-1.48,-1.03)

1.56
(0.909, 2.23)

0.0342
(0.00254, 0.0543)

6.05
(3.26, 10.1)

BSM -4.84
(-5.61,-4.22)

-0.561
(-0.703, -0.438)

-1.19
(-1.44, -0.905)

1.54
(0.938, 2.34)

0.0326
(0.0155, 0.1512)

4.10
(2.62, 7.58)

(3) True Value -11.8 -1.32 -2.96 3.85 0.0717 40

STD -14.8
(-16.6, -13.5)

-1.58
(-1.89, -1.19)

-3.59
(-4.71, -2.99)

5.36
(4.26, 6.83)

0.0422
(0.0173, 0.0772)

121
(96.3, 163)

BSM -11.6
(-14.4, -9.87)

-1.33
(-1.72, -1.09)

-2.96
(-3.57, -2.39)

3.92
(2.89, 5.26)

0.0725
(0.0212, 0.148)

40.0
(26.5, 69.3)

*STD indicates standard approach; BSM, Back-Step Method; θbl=1, θbl=2, and θbl=3, fixed effect parameters describing the baseline probabilities; θplc
and θdose, fixed-effect parameters for placebo and drug, respectively; and ω2, variance of the overall IIV. Results are given for the 3 conditions: (1)
nonskewed distribution of response with low interindividual variability (IIV), (2) skewed distribution with low IIV, and (3) skewed distribution with
high IIV, as average (range).
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the model. In both the BSM and the SHPT, a feature of the
modeling process is calibrated using model-based simula-
tions. In all 3 procedures, it is believed that comparison
between features of data simulated from the model and fea-
tures of the real data can be used to assess the adequacy of
the model. In the PPC, a discrepancy between the model-pre-
dicted variable value and the corresponding observed value
would result in rejection of the present model and renewed
modeling efforts. Similarly, in the BSM, disagreement
between the parameter values obtained from the simulated
data and the values from the real data will result in a renewed
search for parameter estimates. However, whereas in the
PPC the modeling-prediction sequence is performed only
once or repeated only a few times, it is repeated many times
in the BSM. This is one reason that it is advisable to test any
model developed by BSM by using a PPC or similar proce-
dure.

The BSM requires a set of initial estimates for the iterative
procedure. The results are presented for the case in which
these initial estimates are taken to be identical to Φest(1).
Using the estimates from a naïve pooling of the data and set-
ting the variance parameter to a low value is also an alterna-
tive method for choosing initial estimates (Figure 4). For the
type of models and data used in this work, the estimates were
stable after approximately 20 iterations, no matter what ini-
tial estimates were used. This is not necessary true for all
types of models and data; as with most iterative procedures,
it may be prudent to try different initial estimates to assure
that a stable set of final parameter estimates has been found.

To assess the importance of correctly estimating a particular
parameter, we have in the CC chosen to divide the absolute
difference between Φest(1) and Φest(n) by the standard error
of Φest(1). As the skewness of the response distribution

Figure 2. Box and whiskers plots of relative bias based on 100 parameters estimated for the 3 conditions tested: (1)
nonskewed distribution of response with low interindividual variability (IIV) (left), (2) skewed distribution with low IIV
(middle), and (3) skewed distribution with high IIV (right) using STD in NONMEM (top) and BSM (bottom). θbl=1, θbl=2,
and θbl=3 are the fixed-effect parameters describing the baseline probabilities; θplc and θdose are the fixed-effect parameters
for placebo and drug, respectively; and ω2 is the variance of the overall IIV. The ends of each box are the 1st and 3rd quar-
tiles, and a line is drawn within the box at the median. Whiskers are drawn from the edges of the box to the most extreme
values, provided these values do not extend more than ±3/2 q, where q is the interquartile range. Values beyond the
whiskers are considered outliers and are indicated by lines.
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increases, the bias in the parameter estimate increases and the
estimate of standard error may not be reliable. However, the
SEs are used in the CC as scaling factors, to reassure equal
importance of the parameter estimates; only the order of
magnitude of the SE estimates is of importance. The model
convergence will be affected by bias in the SEs in the sense
that the procedure will be prolonged or shortened, resulting
in different parameters being chosen as the final than would
have been chosen had the SE estimates been unbiased.
However, performing several BSM estimations, as we rec-

ommend, would reduce the effect on the final estimates and
in the end only affect the precision, not the accuracy.

In the present study, the CC was used to shorten the total run
time in the cases when the estimated parameters were very
close to the original parameters (~10% of the runs).
However, an alternative is to continue the simulation-estima-
tion steps for all data sets until the simulation parameter esti-
mates, Φsim, show a stable pattern and then use the average
of the n parameter estimates with the lowest value of the CC
as the BSM estimate. An example of such a trace-plot of

Figure 3. Frequency of events at each score in original data (ORIG) compared with simulated data using estimates from
either the STD in NONMEM or BSM for the conditions tested: (1) nonskewed distribution of response with low interindi-
vidual variability (IIV), (2) skewed distribution with low IIV, and (3) skewed distribution with high IIV. The simulated fre-
quencies are averages of 100 simulations and are shown at baseline (top), placebo (middle), and the highest dose (bottom).
The height of each bar segment in each panel is proportional to the fraction of patients exhibiting 0, 1, 2, and 3 in the
response among all patients for the specified condition and for the specified method.
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parameter estimates from condition (3) is shown in Figure 5.
If this latter alternative is used, it may be advantageous to
replace the SE(Φest(1)) in the CC, with the standard deviation
from the simulation parameters in the trace-plot to get a more
accurate uncertainty estimate. This latter method of assessing
the convergence, without using the SE estimate of the first
estimation, is also suitable if the covariance step in NON-
MEM fails.

In addition to the convergence criterion used, the total run
time will depend on the run time of a single problem, the dif-
ference between the starting and the final estimates and the
efficiency of the search algorithm. The run times in the pres-
ent study were acceptable even though extensive simulations
were performed. Nevertheless, run times might become

extensive with other types of data or with other models, and
search algorithms that are more efficient than the one used in
this study might be developed to handle this problem. For
estimates that are sensitive to changes in the data structure, it
might be more efficient to change one simulation parameter
at a time, instead of all at once, as was done in this study.
Other search algorithms that might be useful are optimization
techniques, such as the steepest descend or the simplex
method. However, bias in parameter estimates is in general
relatively modest, and the initial parameter estimates should
often be not too distant from the final estimates. Indeed, sel-
dom are such severe biases observed as for the skewed
ordered categorical data used here.

Bias in parameters has previously been shown in various sit-
uations.2-5 The use of more suitable methods, within or out-
side of NONMEM, may be precluded because of a lack of
knowledge of a more suitable method, lack of access to such
a method, prohibitively long run times, or absence of appro-
priate termination with a more suitable method. Even though
we only have investigated the BSM’s performance on
ordered categorical data, the method may well be applicable
to other types of data and other types of models. Since BSM
only corrects the parameters affected by the bias, the method
can in principle be applied for any model or data. Bias in
parameter estimates within NONMEM can sometimes be
handled through the centering option.1 The performance of
the centering option in ordered categorical data with a
skewed distribution of responses, estimated using the propor-
tional odds model, was investigated by Jönsson et al.10 The
centering option decreased the bias considerably but did not
solve the problem. Thus, the BSM may be an attractive alter-
native in these situations.

Using BSM when the bias arises from model misspecifica-
tion and not from estimation method approximations will not

Table 3. The sample Imprecision, σsample, and Imprecision Due to BSM, σBSM, for Single and Serial Estimations*
Single

θθbl=1 θθbl=2 θθbl=3 θθplc θθdose ωω2

σσsample σσBSM σσsample σσBSM σσsample σσBSM σσsample σσBSM σσsample σσBSM σσsample σσBSM

(1) 0.043 0.041 0.020 0.016 0.020 0.017 0.17 0.14 0.11 0.088 0.11 0.057
(2) 0.049 0.035 0.068 0.058 0.063 0.043 0.12 0.075 0.28 0.47 0.18 0.10
(3) 0.053 0.045 0.11 0.040 0.084 0.041 0.11 0.061 0.26 0.18 0.14 0.10

Serial
θθbl=1 θθbl=2 θθbl=3 θθplc θθdose ωω2

σσsample σσBSM σσsample σσBSM σσsample σσBSM σσsample σσBSM σσsample σσBSM σσsample σσBSM

(1) 0.045 0.010 0.020 0.0059 0.019 0.0048 0.19 0.049 0.098 0.023 0.11 0.014
(2) 0.050 0.014 0.072 0.016 0.065 0.014 0.14 0.031 0.44 0.052 0.16 0.045
(3) 0.054 0.0087 0.10 0.016 0.085 0.015 0.11 0.018 0.26 0.042 0.13 0.026

*BSM indicates Back-Step Method; θbl=1, θbl=2, and θbl=3, fixed-effect parameters describing the baseline probabilities; θplc and θdose, fixed-effect
parameters for placebo and drug, respectively; and ω2, variance of the overall IIV. Results are given for the 3 conditions: (1) nonskewed distribution of
response with low interindividual variability (IIV), (2) skewed distribution with low IIV, and (3) skewed distribution with high IIV.

Figure 4. The simulation parameter values for the variance
parameter for the overall interindividual variability, ω 2 ,
with 2 different initial estimates. One set of initial parame-
ters was based on the estimates from nonlinear mixed
effects modeling and one set was based on the estimates
from naïve pooling. In the latter case, the variance parame-
ter was arbitrarily set to be low.
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improve the predictions. To assess whether the bias can be
corrected using BSM, data can be repeatedly simulated using
the model and then analyzed using the same model to obtain
a set of estimated parameters for each simulated data set.19 If
the estimated parameters are not biased compared with the
ones used for simulation, using BSM will not improve the fit.

With BSM, the objective function value relates to a simulat-
ed data set and can therefore not be used for model discrim-
ination. As an alternative, the confidence intervals of the
parameters could be used for decisions of whether to include
or not include a particular parameter-covariate relation in a
model. However, the standard errors provided by NONMEM
for the original data set should be treated with considerable
caution as they represent imprecision estimates from a
flawed fit. Standard errors could preferably be obtained by
nonparametric bootstrap of the original data set and estimate
parameters for each bootstrap sample using BSM, as was
done for one example data set in this work. In that example,
none of the ranges of the estimated parameters included zero,
thus including dose as a significant parameter was evident.
With 200 bootstrap samples, the true SEs of the parameters
are estimated, but to assess the true 95% confidence inter-
vals, it is recommended that at least 2000 nonparametric
bootstrap samples are performed.20 Inclusion of covariates,
based on the SE estimates, assumes that the distribution of
the parameter estimates is symmetrical, and a visual check,
to test if this assumption is valid, should be performed.

As bootstraps of the BSM may be run-time intensive, a rela-
tively condensed model building would be advantageous. At
least for ordered categorical data, such condensed model
building may fortunately be feasible, as the structural models
generally are simple, usually having only a single random
effect, and candidate covariate models may be identified
through regression against empirical Bayes etas or from
more exhaustive methods using naïve pooling. Yano et al21

have shown that for dichotomous data there is no advantage
in using nonlinear mixed effects modeling over naïve pool-
ing, when estimating fixed-effect parameters. In the case of
skewed ordered categorical data estimated in NONMEM,
naïve pooling could probably be used for forward covariate
model building, and BSM could be used for determining the
error magnitude and structure with nonlinear mixed effects
modeling. Naïve pooling suffers from the erroneous assump-
tion that all observations are independent and therefore the
standard likelihood ratio test cannot be used, but this problem
can to a large extent be alleviated by a randomization test.22

In conclusion, the BSM is an alternative method for estimation
and simulation when the standard approach in NONMEM pro-
duces biased estimates. For skewed ordered categorical data,
BSM demonstrated good accuracy even when the standard
method yielded strongly biased parameter estimates.
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